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SUMMARY 

Routine genetic or genomic evaluations are often conducted multiple times a year. When there 
is a new distribution of estimated breeding values, non-linear cost functions that have been 
developed will often need to be adjusted or recalculated. The purpose of this paper is to present 
routine methods to 1) diagnose and display whether the genetic evaluations have deviated from the 
past course, and 2) standardise the genetic evaluations of a new population so that the previously 
developed non-linear cost function can be applied to the standardised evaluations. Automation of 
this routine could expedite the decision on whether the new data still suits the already-developed 
non-linear cost function and avoid potential errors created by manually recalibrating the non-linear 
cost functions incorrectly. 

 
INTRODUCTION 

The index value, or cost function, of a measured trait with linear economic weights is simply the 
product of its economic value in trait units and its estimated breeding value (EBV; Falconer and 
Mackay 1996; Hazel 1943). For traits with non-linear economic weights, the shape of the non-linear 
cost function (NLCF) and its position relative to the range of estimated breeding values adds a 
complexity into the index formulation (Quinton et al 2019). For example, a cost, 𝐶𝐶($/trait unit) for 
a trait, could be connected to EBV via a conditional NLCF as below 

 𝐶𝐶 = �
𝛽𝛽0 + 𝛽𝛽1(𝑔𝑔 − 𝑇𝑇),                                𝑔𝑔 ≤ 𝑇𝑇
𝛽𝛽0 + 𝛽𝛽1(𝑔𝑔 − 𝑇𝑇) + 𝛽𝛽2(𝑔𝑔 − 𝑇𝑇)𝛾𝛾,   𝑔𝑔 > 𝑇𝑇  (1) 

where 𝛽𝛽0, 𝛽𝛽1 and 𝛽𝛽2 are intercept, linear and nonlinear (curve) coefficients, respectively, 𝑔𝑔𝑖𝑖 is the 
EBV,  𝑇𝑇 is the threshold in 𝑔𝑔 scale where the economic value changes from linear to non-linear, 
and 𝛾𝛾 is the exponent. Values of 𝐶𝐶, 𝑔𝑔 and 𝑇𝑇 are known. The NLCF is only nonlinear when 𝑔𝑔 > 𝑇𝑇. 
𝛽𝛽0, 𝛽𝛽1, 𝛽𝛽2 and 𝛾𝛾 determine the shape of the NLCF. 𝛽𝛽0 and 𝛽𝛽1 are easy to solve by taking two pairs 
of 𝑔𝑔 and 𝐶𝐶 observations into the linear part, i.e. 𝑔𝑔 ≤ 𝑇𝑇. For 𝛽𝛽2 and 𝛾𝛾, given two sets of 
observations of g and C, we can now form two equations 

𝐶𝐶1 = 𝛽𝛽0 + 𝛽𝛽1(𝑔𝑔1 − 𝑇𝑇) + 𝛽𝛽2(𝑔𝑔1 − 𝑇𝑇)𝛾𝛾 
and 

𝐶𝐶2 = 𝛽𝛽0 + 𝛽𝛽1(𝑔𝑔2 − 𝑇𝑇) + 𝛽𝛽2(𝑔𝑔2 − 𝑇𝑇)𝛾𝛾 
Since the value of 𝛽𝛽0 merely shifts the curve up or down but does not change the shape, we can 
simplify the above by assuming the cost is 0 at 𝑇𝑇, then 𝛽𝛽0 = 0, and the above becomes 

𝐶𝐶1 − 𝛽𝛽1(𝑔𝑔1 − 𝑇𝑇) = 𝛽𝛽2(𝑔𝑔1 − 𝑇𝑇)𝛾𝛾 
and 

𝐶𝐶2 − 𝛽𝛽1(𝑔𝑔2 − 𝑇𝑇) = 𝛽𝛽2(𝑔𝑔2 − 𝑇𝑇)𝛾𝛾 
We can solve for 𝛾𝛾 by taking the ratio of the above two equations 

𝐶𝐶1 − 𝛽𝛽1(𝑔𝑔1 − 𝑇𝑇)
𝐶𝐶2 − 𝛽𝛽1(𝑔𝑔2 − 𝑇𝑇) = �

𝑔𝑔1 − 𝑇𝑇
𝑔𝑔2 − 𝑇𝑇

�
𝛾𝛾

 

Then taking the log of both sides and rearranging we have 

𝛾𝛾 =
𝑙𝑙𝑙𝑙𝑙𝑙�𝐶𝐶1 − 𝛽𝛽1(𝑔𝑔1 − 𝑇𝑇)� − 𝑙𝑙𝑙𝑙𝑙𝑙�𝐶𝐶1 − 𝛽𝛽1(𝑔𝑔2 − 𝑇𝑇)�

𝑙𝑙𝑙𝑙𝑙𝑙(𝑔𝑔1 − 𝑇𝑇) − 𝑙𝑙𝑙𝑙𝑙𝑙(𝑔𝑔2 − 𝑇𝑇)  

Then we can solve 𝛽𝛽2using either of the initial equations, e.g.  
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𝛽𝛽2 =
𝐶𝐶1 − 𝛽𝛽1(𝑔𝑔1 − 𝑇𝑇)

(𝑔𝑔1 − 𝑇𝑇)𝛾𝛾  

When the distribution of estimated breeding values changes due to a new evaluation method, a 
new genetic base, pre-selection, or the trait is evaluated in a different environment for a new cohort 
of candidates, the original coefficients including 𝑇𝑇𝑖𝑖  may not hold anymore. Thus, the NLCF needs 
to be adjusted or recalculated (Burndon 1990; Quinton et al. 2019). This is required to ensure that 
the index still penalises or incentivises the right individuals in the right degree based on where they 
are on the estimated breeding value scale.  

A set of economic weights is usually calculated to last for multiple years unless there is a major 
change in the genetic/genomic evaluation results described above, when an update of the index may 
be triggered (Cole and VanRaden 2018). However, there is often a lack of communication between 
genetic evaluation providers and those developing or maintaining the index regarding whether and 
how the evaluation results have changed between runs, sometimes due to data security or IP 
protection. It would be useful to make a diagnosis tool as part of the evaluation pipeline, allowing 
index experts to detect major changes in the evaluation so that they can decide the next appropriate 
step, e.g. to change the NLCF, standardise the EBV, or to understand more about the evaluation 
results before making a decision. The purpose of this paper is to present a routine method to diagnose 
changes in EBV and to standardise these when the latest EBV doesn’t deviate from the past 
distribution. 

 
ROUTINE DESCRIPTION 

The routine will consist of two parts. The diagnostics part and the auto-standardisation part. 
Diagnosis. The first diagnostic is to verify whether the evaluation distribution changed. The 

EBV of every trait in each evaluation run will go through the routine for a series of descriptive 
analyses including summary statistics and tests for a normal distribution. The results will be recorded 
in a report, including the number of animals, mean, median, SD, min, max, outlier values, 
histograms, results from Shapiro-Wilk or Kolmogorov-Smirnov test of normality, and ranking of 
animals. 

The second diagnostic is to check if there is a genetic base shift. When we have accumulated 
multiple evaluation results, then for a set of reference animals that have EBV across all evaluations, 
we can run correlation, pairwise t-test (when EBV are normally distributed), pairwise F-test and 
ANOVA, or Kruskal-Wallis H test (when using genotypes) to check if the latest EBV have deviated 
from the original EBV for which the NLCF was created. If genetic progress in the EBV is expected, 
then we can run a linear regression on the EBV means across evaluations, leaving out the latest 
mean, then compare the observed latest mean with the predicted mean, to see if the observation is 
within the expected range, say, within 2 SD of the predicted mean. The formula to calculate the 
standard deviation of a predicted value, 𝑦𝑦𝚤𝚤� , as a linear regression is: 

𝑆𝑆𝑆𝑆(𝑦𝑦𝚤𝚤�) = 𝑠𝑠�1 +
1
𝑛𝑛

+
(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2

∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2𝑛𝑛
𝑖𝑖=1

 

where 𝑠𝑠 = �∑ (𝑦𝑦𝑖𝑖−𝑦𝑦𝚤𝚤�)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−2
 is the standard error of 𝑦𝑦�, n is the number of observations, 𝑥𝑥𝑖𝑖 is the i-th 

predictor, and 𝑥̅𝑥 is the mean of all predictors. Then we repeat the analysis for EBV for every trait. 
Lastly, we can check the rank correlation of animals overlapped across evaluations, especially base 
or proven animals. 

The third diagnostic is to check if the EBV threshold, 𝑇𝑇, has changed. The relationship between 
the non-linear cost changing point and the phenotype threshold usually stays stable, whereas the 
corresponding 𝑇𝑇 to the phenotype threshold can change across evaluations. When the phenotype 
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threshold is available to both the initial and the latest datasets, we can run a linear regression between 
phenotype and EBV of the initial data and apply the same coefficients to the latest data to estimate 
𝑇𝑇 in the latest dataset. If phenotypes of at least one dataset are not available, we can still run a linear 
regression between the EBV values of the 2 sets of data to estimate new 𝑇𝑇 from this regression. In 
addition, we can check the proportion of individuals with EBV beyond the threshold where the cost 
is non-linear. The threshold will be recorded from the latest NLCF, along with other parameters. 

If there has been a distribution change, genetic base shift or a change of threshold is detected, 
the routine programme will show a warning and flag the out-of-range EBV, so that index experts 
can decide if they want to communicate with evaluation experts about the cause and impact of the 
changes, and if they need to re-design the NLCF. These diagnostics can run every time a new set of 
EBV is available, and the results will be recorded for the comparison. 

Auto standardisation. When an index review is needed, commonly every 3-5 years, the 
historical diagnosis results can be used to help with decision making. If the vector of the latest set 
of EBV, g, has passed the aforementioned diagnostics, e.g. their distribution has not changed 
significantly, or the evaluation expert has confirmed they are homogenous, then we can simply 
standardise them to the initial scale, g0, for which the NLCF was created. 

 
g𝑛𝑛𝑛𝑛𝑛𝑛 =

(g − 𝜇𝜇g) ∙ 𝜎𝜎g0

𝜎𝜎g
+ 𝜇𝜇g0 

(2) 

where gnew is the vector of standardised latest EBV; 𝜇𝜇g and 𝜎𝜎g are the mean and standard deviation 
of the latest EBV, and 𝜇𝜇g0and 𝜎𝜎g0are the mean and standard deviation of EBV at the initial evaluation 
where the NLCF was made. The standardisation formula parameters will be recorded for future 
reference.  

Auto fitting of NLCF. Finally, after diagnosis and auto standardisation of EBV, we fit gnew into 
equation (1) to obtain the corresponding new cost for g and record the new NLCF. 
 
CONCLUSION 

We have described a routine diagnostics pipeline to first validate new trait EBV against historical 
trait EBV, then use an automation pipeline to perform a series of calculations, ultimately generating 
new non-linear cost values. By streamlining and simplifying the selection index review process, this 
pipeline provides timely warnings to index experts when data deviates from expectations, aiding 
them in making informed decisions about necessary adjustments to the NLCF. 
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